

Solid, simple and smart: advanced reliability in compressed air

Compressed Air Line Filters

Quality air solutions

Boost your air quality

- Purify your compressed air by eliminating oil, dust and other contaminants
- Optimize your compressed air installation
- Achieve a higher final product quality

Save costs

- Less potential downtime and longer lifetime of your installation
- Easy installation
- Great serviceability

Undemanding maintenance

- Compatible with any compressor technology
- Can easily be installed and into an existing installation
- Optional pressure drop device (indicator or gauge)
- Easy cartridge replacement

Risks you avoid

Impurities in the compressed air can cause:

- Damage to the distribution lines
- increasing potential downtime
- Considerable increase in maintenance costs
- Reduction in the efficiency and life span of the pneumatic devices
- Deterioration of the final product quality
- Limitations to the reliability of the production process and all its components
- Reduction of your overall profitability

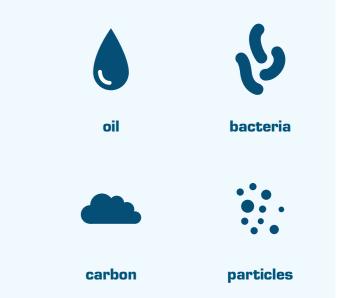
Technology you can trust

- HIGH QUALITY PRODUCT OFFERING YOU TECHNOLOGY YOU CAN TRUST.
- OUR PRODUCTS ARE EASY TO USE AND HIGHLY RELIABLE.
- DISTRIBUTORS ARE ALWAYS NEARBY ENSURING AVAILABILITY OF BOTH PRODUCTS AND SUPPORT.
- HIGH PERFORMANCE PRODUCTS AND A PARTNERSHIP THAT WILL BOOST YOUR BUSINESS.
- SAFEGUARDING LONG-TERM PRODUCTIVITY THROUGH OPTIMAL SERVICEABILITY AND USE OF ORIGINAL PARTS.

How clean is your compressed air?

Atmospheric air naturally contains several impurities such as dust, various forms of hydrocarbons and water in the form of humidity. Once the air is compressed, their concentration is increased. As a result, these contaminants find their way to the compressed air circuit, causing wear and corrosion to the downstream equipment. Ceccato air line filters remove these contaminants from the compressed air.

moisture



viruses

Ceccato filters keep your air distribution network in optimal shape!

Protect your compressed air installation against:

In any compressed air net distribution it is a must to install one or more filters. As a result, an improved air quality is achieved which benefits your complete compressed air network, including the downstream dryers, air pipes and pneumatic tools. Depending on the application you may need to filter your air in different stages to prevent saturation of the elements, keep your air quality and avoid pressure drops.

An all-inclusive offer

Ceccato is your one-stop-shop when it comes to compressed air installations. Our range of air line filters has been carefully designed and manufactured to flawlessly integrate with our compressors, drying equipment and pipework, guaranteeing the highest air quality possible.

Important guidelines

When selecting line filters for your compressed air system, these are some useful guidelines to consider.

- 1. Depending on the application, each point of use in the system may require a different compressed air quality.
- Ensure that the purification equipment which is being chosen will actually provide the required air purity in accordance with ISO 8573-1:2010 standards.
- When comparing filters to one another, make sure they have been tested in accordance with ISO 8573 and ISO 12500 standards.
- Whenever you compare different filtration solutions, it is crucial to keep in mind that the filter performance is highly dependent on the inlet conditions.
- 5. When taking into account the operational cost of oil coalescence filters, make sure you compare the initial saturated wet pressure loss. Dry pressure loss is not a representative metric for performance..
- 6. For dust filters on the other hand, one can expect the pressure drop to rise over time. A low starting pressure drop does not mean it will remain as such throughout the filter element's lifetime.
- 7. Consider the total cost of ownership for purification equipment (purchase, operational and maintenance costs).

Customer benefits

1 ENERGY EFFICIENCY

Ceccato air line filters are designed to optimize air flow, leading to a reduction in differential pressure and a strong increase in energy efficiency.

2. RELIABLE FILTRATION

A unique, in-house design protects your air quality by guaranteeing a reliable and efficient filtration process.

3. SAFE OPERATIONS

Safety is the most important aspect of your operation process. Features like the single start thread, fixed thread engagement and stop-and-lock indication arrows prevent over-tightening and ensure effective sealing requirements.

4. USER-FRIENDLY

The corrosion resistant end caps were color-coded for easy filtration grade differentiation. Differential pressure indicators and gauges are available.

5. UNDEMANDING MAINTENANCE

Maintenance becomes extremely easi with the external accessible, manual & automatic drains supplied as standard.

6. PROVEN PERFORMANCE

The housings and elements are manufactured using high quality components, tested and validated in accordance with ISO12500-1 & ISO 8573-1 2010.

7. FLEXIBLE INSTALLATION

The filters can easily be installed both in new or existing compressed air installations, available in 1/8" to 3" threaded BSP and NPT port sizes and flow rates from 10-2550 m³/h (6 - 1500 scfm.)

8. EASY FITTING

Low-cost connecting kits, wall mounting brackets and a new filter head design enable easy and simple fitting of the filters into your installation.

Filtration Grades

	🅭 🏓			2		
	Р	G	S	С	D	v
Particle removal (micron)	5	-	1	-	0.01	-
Outlet oil aerosol concentration (mg/m³) ■	1	0.3	-	0.01	-	0.003
Total mass efficiency (%)	>90	>99.25	-	>99.9	-	-
Quality class of air at outlet (particles / oil) \blacktriangle	4/3	-/3	3 / -	- / 2	1 / -	- / 1
Initial pressure drop over filter in dry applications (bar)	0.05	0.055	0.055	0.085	0.085	0.115
Initial pressure drop over filter in wet applications (bar) *	0.08	0.125	-	0.125	-	-

Referred to an absolute pressure of 1 bar and temperature of 20 °C

▲ According to ISO 8573-1:2010 in a typical installation

* According to ISO 12500-1 at oil concentration upstream of the filter of 10 mg/m³ (Grade G = 40 mg/m³)

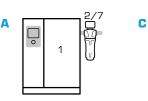
Correction Factors										
For maximum flow rate, multiply model flow rate by the correction factor corresponding to the minimum operating pressure										
Operating pressure barg (psig)	4 (58)	5 (72)	6 (87)	7 (100)	8 (115)	10 (145)	12 (174)	14 (203)	16 (232)	20 (290)
Correction factor	0.76	0.84	0.92	1.00	1.07	1.19	1.31	1.41	1.51	1.6

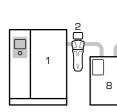
C. High quality air with reduced

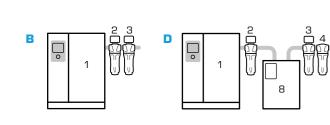
D. High quality air with reduced

air purity to ISO 8573-1:2010

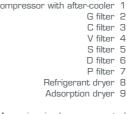
dew point and oil concentration

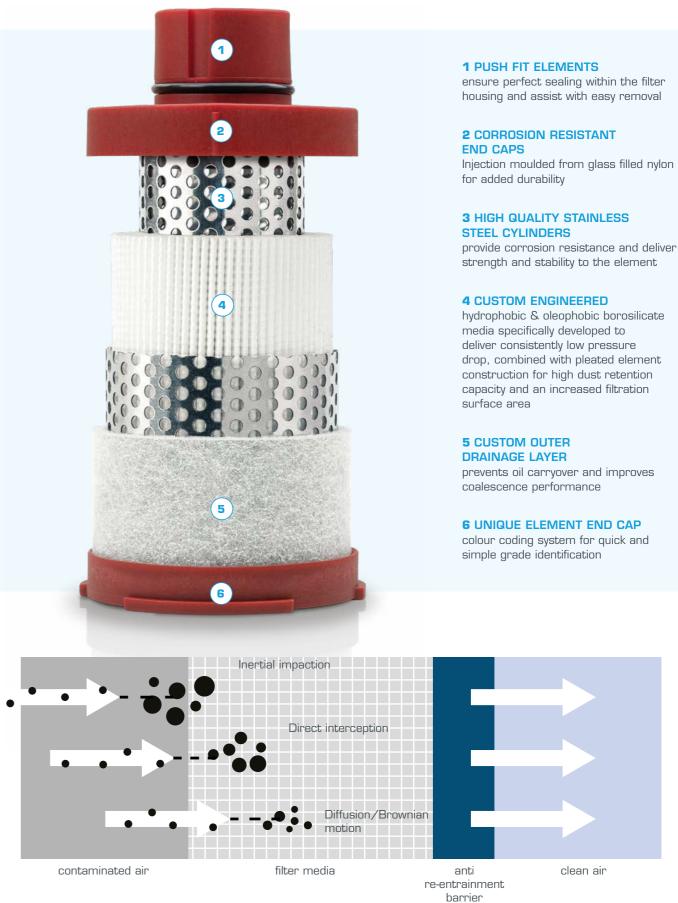

air purity to ISO 8573-1:2010


dew point


[1:4:2]

[1:4:1]


Typical installations



- A. General purpose protection air purity to ISO 8573-1:2010 G filter [3 : - : 3] P filter [4 : - : 3]
- **B.** General purpose protection and reduced oil concentration air purity to ISO 8573-1:2010 [1:-:2]

- A receiver is always suggested
- **E.** High quality air with extremely low dew point air purity to ISO 8573-1:2010 [2:2:1]
- F. High quality air with extremely low dew point air purity to ISO 8573-1:2010 [1:2:1]

High quality components

Extensive Filter Range for your Industry

Water separators

The new water separators combine proven centrifugal technology with a new innovative housing design to deliver market leading water removal efficiencies, eliminating 99% bulk water and guaranteeing continuously low differential pressure.

Integrated into the compressed air filtration range, the new water separators combine proven centrifugal technology with a new innovative housing design to deliver market

leading water removal efficiencies, eliminating 99% bulk water and guaranteeing continuously low differential pressure.

The custom-engineered centrifugal module features unique vanes to eliminate points of low efficiency and a vortex arrestor to stop entrainment.

This ensures minimal operating pressure drop and maintains excellent liquid removal even at low velocities.

Extensive filtration range

Ceccato's range of coalescent, dust and oil vapor compressed air filters come in six filtration grades, with several options and certifications to complement them.

Flow-optimized design

- New deep-pleated media
- Improved air flow characteristics
- Reduced energy consumption
- Reduced cost of ownership

Increased performance

- Exceptional aerosol

- and particle removal - Extremely low pressure drop
- (< 125 mbar) - Operating temperature of up to 120°C (248°F)
- Operating pressure of

up to 20.7 bar (300 psig)

Improved serviceability

- Dead-stop head to bowl connection
- Push-fit filter elements
- Profiled bowl design and hexagonal spanner locator
- New externally accessible drain

Accessories

DIFFERENTIAL PRESSURE EQUIPMENT

Differential pressure Indicator

Differential pressure gauge

DRAINS

Manual drain with adapter

INSTALLATION KITS

Serial connecting and wall-mounting kits

Differential pressure gauge incl. potential-free contact

Level-controlled drain

Performance assured

Filter housing design

The ISO 8573 group of International Standards is used for the classification of compressed air.

✓ 1000 hour neutral salt spray test for corrosion to ISO 9227: 2006

V Burst pressure tested in excess of 100 barg for a 5:1 safety factor

V Housings are pressure decay tested before despatch. Fine filters are 100% aerosol integrity tested

Element technology

The new series is available in a complete range of contaminant removal grades designed to meet the compressed air purity requirements throughout industry.

√ ISO 8573-1: 2010 Compressed air purity standard

√ ISO 12500 Series

International standard for compressed air filter testing

Independent validation

Housings are approved to international standards including:

 \checkmark Pressure Equipment Directive 2014/68/EU – Lloyd's Register EMEA – Notified Body No. 0038

✓ ISO 9001 Quality Systems -LRQ0930553 – Lloyd's Register EMEA - Notified Body No. 0038

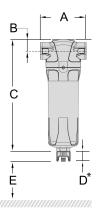
✓ CRN Approved - CRN0E19418 For use within Canada

Laser cutting **Packaging and bottling Optical industry** Automotive

Energy **Electronic component manufacturing** Glass / crystal **Gas generation**

In any compressed air system, impurities are inevitable. Dust, dirt, water and oil contaminants can reduce air quality and significantly affect system efficiency. Inadequate or incorrect filtration can negatively impact performance and end user equipment, and cause potential costly system downtime. With over 30 years' experience, extensive industry know-how that supports our customers to meet the varying demands and standards required in delivering high performance compressed air.

Technical specifications


	Filter	Flow Rate ∕ Size ●			Conn.		Dimensio	ons (mm)	Weight	Element		
	Size	m³/h	lt/min.	SCFM	Size	А	в	С	E	(KG) Approx.	Model	
	1	10	168	6	(G1/8)	50	17	157	60	0.25	F (Grade) 1	
	2	25	414	15	(G1/4)	50	17	157	60	0.25	F (Grade) 2	
	3	42	702	25	(G1/4)	70	24	231	70	0.6	F (Grade) 3	
	4	54	900	32	(G3/8)	70	24	231	70	0.6	F (Grade) 4	
	5	85	1,416	50	(G1/2)	70	24	231	70	0.6	F (Grade) 5	
	6	119	1,986	70	(G1/2)	127	32	285	80	1.7	F (Grade) 6	
Ð	7	144	2,400	85	(G3/4)	127	32	285	80	1.7	F (Grade) 7	
iculat	8	178	2,964	105	(G1)	127	32	285	80	1.7	F (Grade) 8	
Coalescing & Particulate	9	212	3,534	125	(G3/4)	127	32	371	80	2	F (Grade) 9	
sing &	10	297	4,950	175	(G1)	127	32	371	80	2	F (Grade) 10	
oalesc	11	476	7,932	280	(G1 1/4)	140	40	475	80	3	F (Grade) 11	
Ŭ	12	545	9,084	321	(G1 1/2)	140	40	475	80	3	F (Grade) 12	
	13	765	12,750	450	(G2)	170	53	508	100	4.9	F (Grade) 13	
	14	1189	19,818	700	(G2)	170	53	708	100	5.5	F (Grade) 14	
	15	1444	24,066	850	(G2 1/2)	220	70	736	100	10.5	F (Grade) 15	
	16	1529	25,482	900	(G3)	220	70	736	100	10.5	F (Grade) 16	
	17	2125	35,418	1250	(G3)	220	70	857	100	11.5	F (Grade) 17	
	18	2550	42,498	1500	(G3)	220	70	1005	100	12.5	F (Grade) 18	
	1	10	168	6	(G1/8)	50	17	157	60	0.25	NA	
	2	25	414	15	(G1/4)	50	17	157	60	0.25	NA	
	3	42	702	25	(G1/4)	70	24	231	70	0.6	NA	
	4	59	984	35	(G3/8)	70	24	231	70	0.6	NA	
w	5	85	1,416	50	(G1/2)	70	24	231	70	0.6	NA	
rator	6	119	1,986	70	(G1/2)	127	32	285	80	1.7	NA	
Sepa	7	212	3,534	125	(G3/4)	127	32	285	80	1.7	NA	
Water Separators	8	297	4,950	175	(G1)	127	32	285	80	1.7	NA	
	9	476	7,932	280	(G1 1/4)	140	40	475	80	3	NA	
	10	545	9,084	321	(G1 1/2)	140	40	475	80	3	NA	
	11	1189	19,818	700	(G2)	170	53	508	100	4.9	NA	
	12	1444	24,066	850	(G2 1/2)	220	70	413	100	8	NA	
	13	2550	42,498	1500	(G3)	220	70	413	100	8	NA	

• At reference conditions, unless otherwise stated and according to ISO 1217, third edition, annex C.

DIFFERENTIAL PRESSURE EQUIPMENT

* DRAINS

28mm D = + 28 mm Automatic Drain (without adapter)

30mm

D = + 30 mm Automatic Drain (with adapter)

D = + 32 mm Manual Drain (without adapter)

(with adapter)

See data sheet for standard scope of delivery

Contact your local representative:

www.ceccato-compressors.com

CARE

Care is what service is all about: professional service by knowledgeable people, using high-quality original parts.

TRUST

Trust is earned by delivering on our promises of reliable, uninterrupted performance and long equipment lifetime.

EFFICIENCY

Equipment efficiency is ensured by regular maintenance. Efficiency of the service organization is how Original Parts and Service make the difference.

© 2019, Ceccato. All rights reserved. All mentioned brands, product names, company names, trademarks and service marks are the properties of their respective owners. Our products are constantly being developed and improved. We thus reserve the right to modify product specifications without prior notice. Pictures are not contractually binding.